Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guang-Bo Che,* Zhan-Lin Xu and Chun-Bo Liu

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail:
guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.048$
$w R$ factor $=0.147$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
μ-Benzene-1,4-dicarboxylato-bis[chloro-(dipyrido[3,2-a:2', 3^{\prime}-c]phenazine)copper(II)]

In the title compound, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4}\right)_{2}\right]$, the $\mathrm{Cu}^{\text {II }}$ atom is four-coordinated by two N atoms from one bidentate dipyrido $\left[3,2-a: 2^{\prime}, 3^{\prime}-c\right]$ phenazine ligand, one Cl^{-}anion and one O atom from the benzene-1,4-dicarboxylate ligand. The complete benzene-1,4-dicarboxylate ligand is generated by inversion symmetry, leading to a dinuclear complex. Neighbouring molecules interact through $\pi-\pi$ stacking, resulting in a two-dimensional supramolecular structure.

Comment

Dipyrido[3,2-a:2', $3^{\prime}-c$]phenazine, $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4}(L)$, is an interesting derivative of 1,10 -phenanthroline (phen). To date, the chemistry of supramolecular architectures based on L molecules has received little attention (Che et al., 2006). As part of our ongoing studies in this area, we selected benzene-1,4dicarboxylic acid $\left(1,4-\mathrm{H}_{2} \mathrm{BDC}\right)$ as a linker and L as a secondary ligand, forming a new coordination compound, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}(1,4-\mathrm{BDC})(L)_{2}\right]$, (I), which is reported here.

In compound (I), the $\mathrm{Cu}^{\mathrm{II}}$ atom is four-coordinated by two N atoms from one L ligand, one Cl^{-}anion and one O atom from the $1,4-\mathrm{BDC}$ dianion. An inversion centre at the 1,4BDC ring centroid generates a dinuclear complex (Fig. 1), bridged by the $1,4-\mathrm{BDC}$ ligand. The metal-ligand distances (Table 1) are normal. The different carboxylate $\mathrm{C}-\mathrm{O}$ distances suggest localization of the bonding. The $1,4-\mathrm{BDC}$ and L mean ring planes are almost perpendicular [dihedral angle $\left.=83.29(13)^{\circ}\right]$.

Neighbouring molecules of (I) interact through $\pi-\pi$ contacts, leading to a two-dimensional supramolecular structure (Fig. 2). The centroid-to-centroid/perpendicular distance between L ligands in adjacent molecules is $3.49 \AA$.

Experimental

Ligand L was synthesized according to the literature method of Dickeson \& Summers (1970). A methanolic solution (4 ml) of L (0.5 mmol) was added slowly to an aqueous solution (8 ml) of $\mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ and $1,4-\mathrm{H}_{2} \mathrm{BDC}(1 \mathrm{mmol})$ with stirring. The resulting solution was filtered and allowed to stand in air at room temperature for several days, yielding blue crystals of (I) (41% yield based on Cu).

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4}\right)_{2}\right]$	$Z=2$
$M_{r}=926.69$	$D_{x}=1.710 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=9.934(2) \AA$	$\mu=1.39 \mathrm{~mm}^{-1}$
$b=13.394(3) \AA$	$T=292(2) \mathrm{K}$
$c=14.202(3) \AA$	Block, blue
$\beta=107.75(3)^{\circ}$	$0.29 \times 0.27 \times 0.23 \mathrm{~mm}$
$V=1799.7(7) \AA^{3}$	

Data collection

Rigaku R-AXIS RAPID

diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.665, T_{\text {max }}=0.729$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.147$
$S=1.05$
4090 reflections
271 parameters
$Z=2$
710 Mg m
Mo $K \alpha$ radiation
$T=292$ (2) K
Block, blue
$0.29 \times 0.27 \times 0.23 \mathrm{~mm}$

17350 measured reflections 4090 independent reflections 3015 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=27.5^{\circ}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.025(3)$	$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2196(11)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.025(3)$	$\mathrm{C} 19-\mathrm{O} 2$	$1.247(5)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.942(2)$	$\mathrm{C} 19-\mathrm{O} 1$	$1.277(4)$
			$92.87(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$91.96(11)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$174.05(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$170.38(11)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$94.16(8)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$80.66(11)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	

All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest residual electron-density peak is located $2.50 \AA$ from atom H22.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figure 1
A view of (I), showing displacement ellipsoids at the 30% probability level and arbitrary spheres for H atoms. [Symmetry code: (i) $2-x,-y$, $1-z$.]

Figure 2
A view of the two-dimensional supramolecular structure of (I) arising from $\pi-\pi$ interactions. H atoms have been omitted.

The authors thank Jilin Normal University for supporting this work.

References

Che, G.-B., Liu, C.-B., Cui, Y.-C. \& Li, C.-B. (2006). Acta Cryst. E62, m1362m1364.
Dickeson, J. E. \& Summers, L. A. (1970). Aust. J. Chem. 23, 1023-1027. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

